加速度傳感器用來檢測機器人的加速度,同樣包括身體的加速度和各關節(jié)角加速度,有時候也作為抑制各關節(jié)機械振動而檢測。移動機器人本體的運動加速 度和重力加速度對控制其姿態(tài)有重要作用,而各關節(jié)加速度對其動態(tài)性能、穩(wěn)定性 等有重要影響。由于微分對噪聲的放大作用,工程上一般不能通過對位移信號的 二次微分來獲得加速度信號,而需要用專門的傳感器,與之相對應的有加速度計, 根據(jù)原理可分為應變式、壓電式和MEMS 技術等。
應變片加速度傳感器3:應變片加速度傳感器是由一個板簧支承重錘所構成 的振動系統(tǒng)。在板簧兩面分別貼兩個應變片,應變片受振動產生應變,其電阻值的 變化通過電橋電路的輸出電壓被檢測出來。
壓電式就是利用壓電原理測量標準質量塊所受到的慣性力,根據(jù)F=ma 計 算 加速度,它也屬于慣性式傳感器。它是利用某些物質如石英晶體的壓電效應,在加 速度計受振時,質量塊加在壓電元件上的力也隨之變化。當被測振動頻率遠低于 加速度計的固有頻率時,則力的變化與被測加速度成正比。壓電式加速度傳感器 具有動態(tài)范圍大、頻率范圍寬、堅固耐用、受外界干擾小以及壓電材料受力自產生電荷信號、不需要任何外界電源等特點。
常用的壓電式加速度計的結構形式如圖4-1-7所示。圖中(a) 是安裝壓 縮型,壓電元件 一質量塊 一 彈簧系統(tǒng)裝在圓形中心支柱上,支柱與基座連接。這種 結構有高的共振頻率。然而基座B 與測試對象連接時,如果基座 B 有變形則將直 接影響拾振器輸出。此外,測試對象和環(huán)境溫度變化將影響壓電元件,并使預緊力 發(fā)生變化,易引起溫度漂移。圖(c) 為三角剪切形,壓電元件由夾持環(huán)將其夾牢在 三角形中心柱上。加速度計感受軸向振動時,壓電元件承受切應力。這種結構對 底座變形和溫度變化有極好的隔離作用,有較高的共振頻率和良好的線性。圖(b) 為環(huán)形剪切型,結構簡單,能做成極小型、高共振頻率的加速度計,環(huán)形質量塊粘到 裝在中心支柱上的環(huán)形壓電元件上。由于粘結劑會隨溫度增高而變軟,因此Z高 工作溫度受到限制。
微電子機械系統(tǒng)(MEMS) 加速度傳感器由于 采用了微機電系統(tǒng)技術,尺寸大大縮小,而且重量 小、功耗低、線性度好。而且,由于微機械結構制作 準確、重復性好、易于集成化、適于大批量生產,所以 具有很高的性價比。MEMS加速度傳感器有很多 種分類方法,按照慣性檢測質量的運動方式可分為 線加速度傳感器和角加速度傳感器;按照有無反饋 信號可分為開環(huán)和閉環(huán)加速度傳感器;按照材料分 類有硅微加速度傳感器、石英加速度傳感器、金屬 加速度傳感器;按照信號檢測方式可分為壓阻式、 電容式、壓電式、隧道電流式及諧振式等。
圖4-1-8 是一種典型的壓電式 MEMS 加速度傳感器結構。
資料獲取 | |
服務機器人在展館迎賓講解 |
|
新聞資訊 | |
== 資訊 == | |
» 按控制方式進行分類,機器人分為二種:非伺 | |
» 按機械手的幾何結構進行分類,機器人分為三 | |
» 智能安防巡檢機器人的起源與發(fā)展歷史,De | |
» 智能交互機器人的主要部件選型參考方案:伺 | |
» 智能接待機器人的關節(jié)機構設計方案參考:運 | |
» 智能接待機器人機構設計模型分析:機器人運 | |
» 智能接待機器人控制結構設計原理:串行和并 | |
» 中小企業(yè)展廳講解機器人的電源電池:鉛酸蓄 | |
» 智能互動機器人的嘴巴:6個功能模塊組成 | |
» 具身智能機器人的鼻子:和電現(xiàn)象有關的電子 | |
» 語音交互機器人的耳朵:聽到聲音,識別不同 | |
» 人臉識別機器人的眼睛:認字,識圖,認物, | |
» 展廳機器人智能控制系統(tǒng)設計方案:電源系統(tǒng) | |
» 智能全方位移動機器人解決方案:運動控制器 | |
» 迎賓機器人的運動控制器設計原理,硬件框圖 | |
== 機器人推薦 == | |
![]() 服務機器人(迎賓、講解、導診...) |
|
![]() 智能消毒機器人 |
|
![]() 機器人底盤 |
![]() |